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Abstract-In this paper the use of symmetries in problems concerned with laminated fibre-reinforced
composite structures is examined systematically. Incorrect and incomplete treatments of this subject
have appeared in the literature and these are c1'lrified herein. A model of a complete structure is
not needed provided that the geometry and the loading of the structure show the required symmetry
properti~'S. even though the boundary conditions introdu~'ed can vary from one symmetry to another.
The extent of the reduction in the size of the problem depends upon the laminate layout scheme.
Particular comments arc made on the proper usc of symmetries in geometrically nonlinear problems.
Further 'Ipplic.llions of symmetries in analytical approaches which lead to a reduction in the number
of the dimensiolls of the problem arc also discussed.

I. INTRODUCTION

foor any body in three-dimensional space. there arc three independent types of trans­
formation which reveal particular symmetries (Hammermesh. 1962):

(I) Rellection in a plane (or mirror rellection) denoted as I: or more specifically as I:,
if the plane is normal to the x-.txis.

(2) Rotation through an angle about some axis. noted as C' if the angle is 21C/n. or
C~ if the axis is the x-a:<is. In particular. C~ is sometimes termed as rellection in a line.
skewsymmctry. inversion symmetry or polar symmetry,

(3) Translation symmetry. denoted by TA if the translation is A or by T~' if the
translation is Ax along the x-axis. Such symmetry may occur only when the body is of
infinite extent in the chosen direction.

All other symmetries can be obtained by a combination of these three. e.g. reflection
in a point is simply the combination of I: and C 2

•

When symmetries are used in structural mechanics. three factors have to be taken into
consideration: geometry. loading and material. The first two were reviewed by Glockner
(1973) in great detail and the third was examined by Noor (1976) and Noor and Camin
(1976) for laminated anisotropic structures, In spite of the availability of such work.
incorrect uses of symmetry conditions for laminated anisotropic structures have appeared
in the literature from time to time [sec for example Reddy (1984)]. mostly in the context of
worked examples. The treatments of this question by Reddy (1984) and Mallikarjuna (1991)
were devoted specifically to symmetry conditions and were either incorrect or incomplete
and. therefore. might mislead. One reason for this is the fact that the symmetry conditions
in Noor and c.lmin·s work arc in the form of transformations rather than boundary
conditions directly which makes them less explicit and therefore they have not received
enough attention. There seems to be a need to produce a complete examination of the
problem to ensure that symmetry conditions are used correctly. effectively and simply. This
paper provides such an explanation in the context of laminated composite structures.

2. SYMMETRIES AND SYMMETRY CONDITIONS

It is helpful first to specify what we mean by "symmetry" and "symmetry conditions",
Symmetry is a general physical property which a structural system may possess and sym­
metry conditions are the conditions implied by this state. We shall come across the word
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"antisymmetric" used in two different ways. One is antisymmetric loading which results in
antisymmetry. i.e. there are reversals in the directions of the variables describing the state
of the structure. To emphasize the difference. the terms "symmetric symmetry conditions"
and "antisymmetric symmetry conditions" may be used. It is then clear that antisymmetry
is a form of symmetry which appears only when the geometry and the material of the
structure possess the partiCUlar symmetry while the loading changes its sense under the
symmetry transformation. The other occasion on which the word is used is in defining the
layout scheme of a laminate as an antisymmetric ply. This is commonly accepted termin­
ology and strictly has nothing to do with the symmetry conditions under discussion.

We shall explore all the possible symmetries that the material (fibre-reinforced com­
posite laminates) may possess. regardless of the actual geometry and associated loading.
Figure I shows a typical material element where x . .I' and:: are local material coordinate
axes which do not necessarily coincide with the global axes used to describe the structure.
The ::-axis is normal to the lamina. For the sake of convenience. the layout of the laminates
will be classified into one of three types and the corresponding discussions will be made
with orientations referred to the local X- • .1'-. ::-axes. The angles refer to the orientation of
the fibres in a particular lamina with respect to the x-axis.

(i) Cros.\·-I'~I' (e.g. [O/90/l)O ])
This is a laminate with several layers whose fibres arc parallel to or at right angles to

the x-axis as indicated. Materials with such a layout possess symmetries r,. r,. C'. T\ and
T,. Furthermore if the layout is middle surface symmctric. c.g. [0 ,l)O /\)O iO ). we havc
symmctrics C~ and C,' while the symmetry r: results from the symmetric layout.

(ii) ../II/isYl//l//c/riC/I!r (e.g.. ['Xr!:x,!-'X,/-'Xdl
Materials with this layout possess symllletries C:. c ~. C;. T\ and T,. It should be

noted that the so-called antisymllletric cross-ply. e.g. [OJ\)O 10 j\)Oj. could bc a particular
limn of this eateg.ory if the 10l.:al x- and y-axcs arc so chosen tlwt they an: at 45 to thc
fibre direl.:tion.

(iii) Arhi/l'llry I'~I' (c.g. ['X,/cx,/cx.])
Materials of this layout still posse:ss symme:tries C;. 1'\ and 1', in gene:ral. It is the

sYlllmetry C; that was not recognized by Re:ddy (1\)84) and Mallikarjuna (1991) and
the:re:fore it was sugge:ste:d there:in that full structures have: to be analysed for SUdl layouts.
Howe:ver for the ge:ome:try and the loading possessing the symmetries of the example:s in
the:se: refe:relH:es. a half strul.:lUre Illodc:l is always applil.:able by using this symme:try.

Each of the symme:tries can be: expressed in te:rms of symmetry conditions which can
the:n he applied as boundary conditions to the repre:sentative portion of the: structure along
its e:dge:s. Suppose: that the geometry and the loading possess the same symmetrie:s as the
material. The:n the: symme:try conditions arc give:n in Table I, where each materi'll partide:
on the reference surfal.:e: is assumcd to have six degre:e:s of fre:edom. translations .dong the
a.xes II,. II, and II: and rot.ltions about the axes 0" 0, .Ind 0;. The associated gene:ralized
forl.:e:s are: F,. F,. F:. M, . .\/, and AI:. Each of the:se can be easily identified as se:l.:tional

z
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Fig. I. i\ lypicalmalcrial clemcnl.
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Table I. Symmetry conditions

Symmetric
Displa~:ements Forces

Antisymmetric
Displacements Fon;es

(for half

structure

x;;l: 0 or

x'" 0)

(for half

structure

x;;l: 0 or

.~ '" 0)

c;
(for half

structurc

.r ;;l: 0 or

.r '" 0)

c'
(for half

slructure

x;;-: 0 llr

x:;;; 0)

c,'
(fur half

slruclure

x ~ (lor

x'" 0)

c,'
(for half

structure

y;;l: 0 or

y '" 0)

u,I,.o = 0

0,1.." = 0

0""01 = 0

u,l..n = 0

0,1..01 = 0

0,1 •.• 0 = 0

11,.1,.• 01 = 0

11",.11 = 0
0•.1,..01 = 0

OJ•.• o = ()

11,1,.0'" 0

11,1,.11 = 0

11,1'.01 "" ()

iI,I,_n,r ~ -1I,1,_n,

1I.1._u,l' = ~ul,ll_lI,

1I:!,_(f, 1 = 1I..J,_(l, I

11,1..01., = -0,1'.01.•.
11,.1,.0.•. = -/1•.1,.01..•
/1,1'.0., = /1,1'.01.. ,.

1I,1',I'_u = -u,I_',1, ... n

1I,1"I'-'u = -11,,1-,1'\'_0

ll;l"I-_o = UJ-i,"'-O

11,1..•.• 0 = -0.1""'.0
11,1.".0 = -/1.1 ,... 0
/1.1,.•• 0 = /1,1"".0

F,.I,.n = 0

F,I .. n =0
.\1,1 .. 01 = 0

F,I..n = 0
F",.n = 0
M.I..n = 0

F,I..n = 0

,\1.1".01 = 0

F.I..11 = 0

/",1 •• 0., '" 1-'.1'.0.•.
1-',.1,.0.•. = 1-'.1'.01...
F,I •• o.•. = -F,I,.n.. ,
M.I,.n.• = ·\1,1 •. 11. ,
M,.I..o., = ,\1,1 •• 0.•.
;\(1..0.•. '" -M.I,.o.

1-'.1 •.•.• 0 = 1-'.1""'.01
F..I\....... 11 = 1-'11 _\.1, .... 0

F,I,.•.• o = -F.I .•.•.• o

,\1.1,.,.11 = .\1.1""'.0
M.I,.,.•o= ,\/.1""'.0
M,I •. ,·_o = -.\1.1 ,.,.0

u,I,.n = 0
u,l .. o=0
0,1 .. 01 = 0

u,l..o = 0

u,I •• o = 0

0,1.'0 = 0

1/,1..01 = 0

0.1..01 = 0

u.I,_n, r:::;: 11,1,_11.. "

1l
"
I,_II". = 11 1 1,_11, '"

u..l,_n, •. = -1I:1,_u,_1

0.1 •. 11.• = 0.1,.11. ,
0•.1'.0.•. = 11.1 •• 0. ,.
/1,1'.11.•' = -11,1 •. 0.

u,I o = U.I--l'I_U

",·1" I) = 11,·1_ \.1'''' 0

ll:I.,I-_u = -1I.:1-1,I"_n

11.1"".0 = 11.1 •. ,.0
0.1"".0 = /1.1. ,.•• 0

/1.1 •. ".0 = -0.1 ... _0

F,I .. o=O
,\1,1,.01 = 0

,\(1"01=0

F,.I,.• o = 0

,\1,1,.01=0
:\1,1..01 = 0

F,.I,.n = 0

F,I,.n = ()

,\/,1 •.• 01 = 0

;\LI •• n = 0

F,I •• n "" ()

M,I,.o = 0

f',1 ,.01., '" - 1-'.1 .• 11.•.
F.I •. n., = - 1-'.1 •. 11.
f~I .• II.' = f~I .. II',
M.I .. II., = -M.I,.n.
.\1,1..11." = -M,I,.n
M,I,.o.•. = M,I •• II. ,

F.I,.,.• n= -F,I· •.•. _o

F.I •.•·.o = -F.·I·,.,.n
F,I,.,." = f~1 ,.,'_11
M.I,.•• ,,= -M.I_,.,.o
j\(t.•-_o = -.\111_1,1' ... 0

M,I •. ,." = .\(1 •.• _01

11,1, .•· = IIJ. t,\'.1 p.I •.• = F,1. "\'.• 11,1..,. = -11,1, •.\,.,.
11,1, .• = 11 •. 1, •'\'.• F,I, ... = F.I, "" .• It.·I,., = -11,·1, "'\'.1"

11,1, .• =u.. I, •.\" .. F,! •. , = F,! • •.\ .... II:It. ~ = -1(·1, ".\\.1'

11.1,.• = 11,1, "".' M.I •.•·= .\1.1. ..\ •. , 11,1, .• = -UJ, ~.h.1

11,1,.•. = 0,.1, ".\'.1' A/.I,.,. = .\/.1. '.\< .• 11,1, • - -11,.1, •.\ ..•.
0,1 •.• = 0:1. •.\ •.• AI:I •.•· = .\1,1. •.\<." II,! •.• = -II,I,,~, .•.

11,1 •.. = 11.1.., •.\. F.I,., = F,I •.•·•.\. 11,1,.1 = -lItl,.I....""
tI,·I',I· = " .. I•. rt"l F•.I. .•. = Frl,.l· •.,,, 11.1 •.• = -u..I,......\1

11,1, .•· = u:I,.I· ...\I· f~I,., = F,I •...• ,\ .. 11,1 •... = -u.f',I· .. ,h
11,1,.• = 11.1,.••.\. M.I,.• = ·\1,1,.• •.,. 11.1 •. , = -11,1 •. , •.\.
11,·1 •• = 0,,1, .....\, A/,-I..,. = .\/,1. .•.•." 11,1 •.. = -11,1,.••.\.
11:1, •. = 11,1,.••.\. A/,I •.•· = .\1,1 •.•.••\. 11,1,., = -11,1,.,.•.\,

F.I,.,. = -F,I, •.\ ..•
F,I, .• = -F,.I, •.\•..
F,I,.,= -F,I,." ....

A/,lLI' = -J\/.I,t;\',1

;\/,1,.,. = -Al,·I, '.\<.•

,\1:1,.,. = -.\/,1 ...\ ....

f·,I,." = -F,I,.I.....\,
1-',1 •.•. = -1-',1,.,.•.\,
F,I •.•. = -F,I,.,.•.\ •.

.\1.1,.•. = -,\1,1,.•.•.\.

.\/.1,... -,\I,I,.,.~,

,\1,1,. " = - ;\I,I.., •.h
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Fig. 2. Identification of generalized displacements and forces fllr plates and shells.

variables II. 1'. 11'.;(. {f. N". N". N". M". M". M,"" Q, and Q, in laminated plates and
shdls as shown in Fig. 2. Depending on the nature of the loading. the symmetry conditions
in Table I an: given for symllletric and antisymmetric cascs respcctively. For displacemcnt
finite demcnt analysis in particular. onc docs not nced to bc concerned about the force
wnditions in Tahle I. since they will he included as natural houllliary wnditions and
satisfied autonwtically hy the variational procedure.

In laminated anisotropic structures. the material property is characterized by the wdl­
klHlwn A. IJ and f) matrices (sec Vinson and Chou (llJ75)1 and therc may he coupling
hdwccn the components of the stress resultants and thc gcncralized strains to diflcrent
extcnts depending on the naturc of the layout. Two particular types of coupling arc thosc
rcprcsentcd by matrix IJ and thosc elemcnts in the A. IJ and f) matrices with subscripts 16
and 26 rcsulting from thc pn:sencc of ofl'-a.xis plies. Rcddy (llJS4) attributed the invalidity
of ~:-type symmetry to the former typc of coupling. This is not correct. What violates thc
L-type symmctry is thc lattcr type of coupling. What have been violated due to the pn:sel1l;e
of nonzero clements in the 8 matri x (specifically. clemen ts 8 1I. IJ I~' IJ ~~. 8 61.) arc symmetries
C ~ and C,~. This did not secm to be realized by Reddy (I 9S4). Fortunately. none of these
types of coupling violates the symmetry C;.

The symmetry conditions given by Mallikarjuna (1991) relate to some particular cases
which will be considcred later in the examples. However the conclusion that a full structure
modd has to be used for an arbitrary ply is not valid in view of the symmetry C; which is
satisfied by the loading as well as the geometry for the particular example quoted.

It should be noted that once a structure shows symmetry C;. it makes no difl'erencc
which plane is chosen to cut the structure into two symmctric or antisymmetric halves as
long as thc planc passcs through thc rotation axis. Noor and Camin (1976) prclcrrcd a
diagonal planc which is obviously not the bcst choicc whcn quadrilatcral elemcnts arc uscd.
In this case onc has to resort to the concept of dcpendent nodcs to apply such symmetry
wnditions. which may blur the darity of the application of such symmetry conditions in
cert'lin cases. However for problems in which the only symmetry shown in the structure.
usually of type L,. L,. C; or CI~' is between the two halves cut by such diagonal planes.
the concept of dependent nodes can be very useful.

To show how the symmetry conditions arc applied in practice. it is helpful to look at
a few examples. Three structures are given in Fig. 3. When the layouts of these structures
are cross-ply. the symmetry conditions arc no different from those for structures made from
isotropic materials which are familiar to the reader. However. it may be worth noting that
the loading could be antisymmetric as in Fig. 3(b) for L, symmetry. Only the symmetric
case such as Fig. 3(a) was given for this layout by Mallikarjuna (1991). Herein we shall
concentrate on layouts other than cross-ply.
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(b)

z

( c)

Fig. 3. E~amplcs: (al i\ rt:l:langular pl'lll: under uniform prt:ssure. (b) i\ rel:tangular plaIt: under
linearly distributed prt:sSllrt:. (1:) i\ t:ylil1lkr under a pair of I:onl:t:nlratt:d loads.

For an antisymmclric ply, e.g. [:xr/:x:/-:x:/-:xd. the structure in Fig. 3(a) possesses
c; and c~ symmetries (C; as well, but it is not independent. actually it is a simple
combination of C ~ and C~) while the loading is antisyml11etric under both transfornwtions.
(The loading is syml11etric under r, and r" but the material docs not possess such sym­
metries.) If the plate is cut along the x- and y-axes and modelled by a quarter of it, the
boundary conditions arc

II = II = 0, at y = 0 ("nt;synunctr;') ]
and ( I )

l' =:X = 0, at x = 0 (antisyml11etric)

These arc exactly what were proposed by Mallikarjuna (199 I). However, the situation is
quite dill"crent for the structure in Fig. 3(b) where the loading is antisymmetric [as in Fig.
3(a») under C~ but symmetric under C~. (The loading is antisymmetric under r, but again
the material docs not possess such symmetry.) Therefore the boundary conditions for the
quarter plate arc

and

II = II = 0, at y = 0 (antisymmetric)

II = II' = II = 0, at x = 0 (symmetric)
] (2)

It is seen that a plate with antisymmetric plies can be exactly represented by a quarter model
provided that the geometry possesses the same symmetries C; and C~ as docs the material,
and the loading is either symmetric or antisymmetric under these symmetry transformations.
Boundary conditions for the quarter model can be obtained from the symmetry conditions
(Table I) corresponding to the symmetric or antisymmetric nature of the loading.

Moving on to plates with arbitrary ply orientations as in Figs 3(a) and (b), the only
symmetry is C;. Thus they can both be modelled by half models. Under this symmetry, the
loading is symmetric in Fig. 3(a) and antisymmetrie in Fig. 3(b). Suppose the plates are cut
along the x-axis, the boundary conditions along it are
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ul\.I'=o = -ul_ t,I'~11

cl.'t. I''''' 0 = -rl-x.l'''''o

".'Ix.~·=o = H'I-r.I'=f1

21,.1·=0 = -21_,.1·=0

fJl\.l=o = -fJl-\.I=1I
in partinilar

and

with

II = [" = 2 = Ii = O. with II· free at x = y = O.

li I \". \' = () = III _x. r -= 0

rlx.I·=o = rl-x.l'=o

H'IL\'=l1 = -H'!_,-.r=ll

~Ior.l'=f) =:.cl 0(.1"=0

f/I \. 1 = II = fi I- <. 1= 0

(4)

(5)

Ir = 0 with /1.1'. ':C. fJ free at x = y = 0 (6)

for the plates in rigs 3('1) and (b) respectively.
Of course. to apply the C; onc can cut the plates along any other axis through the

origin in the x y plane such as the diagon.ds used in Noor e( aes papers and arrive at a
similar set of conditions. hut such arrangements arc ohviously not the best choice when
quadrilateral elements arc used. This is hel:ause. in this Clse. one has to either introdlKe a
n:ry irregular Illesh or resort to the wnl:ept of depcndent nodes [sec Noor (1976)1 to apply
the symmetry in the form of a transformation whidl is mUl:h less explil:it than in the form of
houndary conditions given 'Ihove. It should be pointed out thaI, whatever I:hoil:e is made.
none of the other possibilities I:an be used at the same time since there is only one independent
symmetry. In ~)ther words laminates of arbitrary ply e.ln be modelled hy half models but
new I' smaller than half.

[t is important to notil:e the dillcrenee between boundary wnditions (I) and (2) and
thosl: given in (3) and (5). The first are in the form of prescribed values (zero in this case)
whidl is ljuite standard while the latter arc in the form of cljuations relating unknowns. A
brief demonstration is provided below of the applil:ation of such conditions. Assume that
the finite ekment eljuilibrium equation is in the form:

1\,., I 1\" symrn.

1\,. 1,1 1 1\, t 1,/ 1\/ t- 1.1 -t- I

"" I., 1 1\ 1.1 1\ I.l .. t, , ,
1\" 1 1\,., 1\,., , I

"""
I, I 1\, . I., 1\,. I., , I

1\, I., I

1\,., I 1\,.,

K, • I., I K, • I., 1\,. I., , I

/I, F,

ii, f- J F,+ I

F,
(7)

/I, I

/I, F,
/I} + I F,+ I

Imposing the condition
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(8)

leads to the following form of eqn (7) :

K,.i __ I ± K,., _I K.., ± K,., ± "2K,., symm.

K,.I.,_ I K,.I., ± K,. I., K,. I.,. 1

K,-i.I"

K,+ 1.,_1

K, I.,±K,-I.,
K,. I., ± K,. I.,

KJ 1.,.1

K,.I.,.I
K,_I.,_I
K,+ 1.,- I K,. I.,. I

II, Fi±F,

/I, .. I F,. I

(9)

II, _ I F I,
II, .. I F,. I

The symmetric property of the stiffness matrix is retained aner imposing the wnditilllls but
the hand width of the partkular columns (ith in eqn (9)\ can be aflix:ted (il1l.:reased) to some
extent. Even so the solution of slIl:h a system is always more economical than dcaling with
a complete structure.

The increases in the band width of particular columns in the stiffness matrix to dil1"crent
extents for diflcrent dlOices of cUlling planes could make a slight dil1crel1l.:e in wmputing
I:osts. but these diflcrenl:es arc usually negligiblc.

The disl:ussion above shows that a plate with arbitrary ply orientations l:an bl: rep­
resented exactly by a half model. This contradicts the conclusions drawn by both Reddy
(1984) and Mallikarjuna (1991).

The third example in Fig. 3(1:) is a cylinder. The m'lin discussion will l:entre on the
I:ase of an arbitrary ply but brief comments will also be made 'lbout the antisymmctril: ply
I:.lse. (t is obvious that the problem (geometry. loading and material) possesses three
symmetries c~. C; and C; (x. y. =arc the global axes of the structure and arc dil1crent
from those of the material). However. only two of them arc independent. Therefore. the
structure can be represented by a quarter model. For the qu'lrter y ~ O. =~ O. the boundary
conditions along the two edges are

from C;:

and from C;:

,~ I\. r _ 0.: _ R = - l'l \'. ,' .. II.: ... R

H'I,.} .... n.:_ R = u'l ,t, " .... n.:- R

:t If.•"_n..: ... R = -:t I -'C" ••~• ... 0.: • R

fII,.,.n.:-R = -IJI..... _O.:_R

/I = I' = 1: = {J = O. at x = O. y = O. == R:

(10)

( I I)
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U!x .•-,.,R.:_n == -ul-T.1-=R.:=O

r I l". ~. == R.:= 0 = -c I - (. r = R.: -= 0

1\·lc .. ~R.:=O = Irl_c .. =R.:=O

:xl,... =R.:=O = - :xl_ ,... ~R.:~I)

Pic ,'~ R.: =0 = - PI-,.I'= R./ =0

1I = l' = :x = P= O. at x = O. y = R. : = O.

(12)

( 13)

Here 1I and l'. are the in-plane axial and tangential displacements. :x and {3 are the cor­
responding rotations and 1\' is the lateral deflection. Here. all the conditions correspond to
symmetric loading. In practice there could be a case ofantisymmetric loading. The boundary
conditions could be obtained in a corresponding manner which is quite straightforward.
Also. one may prefer to choose other quarters than the one chosen here. The boundary
conditions could be obtained in a similar manner to those above.

It is interesting to note that in this case having an antisymmetric ply in the shell
structure provides no extra help at all. This is because the local axes of material symmetries
C; and C; (where here x and yare local axes) are not coincident with the global axes of
the structure. This could be regarded as another difference between plates and shells from
the viewpoint of symmetry properties.

The above discussions are basically focused on rotation symmetries. Before completing
this section. it might be helpful to comment on the two most frequently encountered
symmetries :Issociated with reflection and rotation in laminated structures. It has heen
demonstrated through the examples considered that the rotation symmetries can be ex­
pressed in terms of boundary conditions which arc of no suhstantial difrerence in form
from those associated with rel1ection symmetries. Therefore. once a rotation symmetry is
identified. it can he easily interpreted hased on the above discussions and the procedure to
apply such a boundary condition is familiar to strlll:tural analysts, It has :IIso been shown
that the rotation symmetries an: as dl"cctive as reflection symmetries in redlll:ing the size of
the modd to bc analysed. Beyond this. it should be noted that rotation symmetries
appear much more frequently in laminated structures than rel1ection symmetries. One of the
major intentions of this paper is to draw the attention of structural analysts to this type of
symmetry in laminated structures and to encourage them to make full usc of it in practice.

Finally. it might be helpful to recall two well-known facts. Firstly. any arbitrarily
distributed load can be decomposed into a symmetric component and an antisymmetric
one. This may be useful sometimes since it may be morc economical to c:lrry out two
separate half structure analyses (one symmetric and one antisymmetric) than to analyse a
single. complete structure. Secondly. in some analyses there might be situations where load
or load increment appears to be in a neutral state such as in problems of free vibration
(Noor and Camino 1976) and buckling (li and Reid. 1990). The behaviour of the structure
could be either symmetric or antisymmetric and therefore both have to be analysed before
one can decide which leads to the lowest frequency or buckling load.

J. CHOOSING TilE SYMMETRIES IN GEOMETRICALLY NONLlNE/\R PROBLEMS

Consider first a simple example of the planar ring shown in Fig. 4. It is obvious that
thc problem satisfies both symmetric symmctry :E, and antisymmetric symmetry :E,. As is
well known [sec for example Niles and Newell (1943»). the former n:duces the degree of
statical indeterminancy by one whilst the latter produces a reduction of two, The point of
this example is to show that a different choice of symmetries does make a difference in the
nature of the reduced problem. These differences can be very pronounced since some choices
may be unacceptable in certain circumstances when geometric nonlinearity is involved.

As noted above. some problems may possess more than one form of symmetry. To be
spccific. consider the two simple cxamples in Fig. 5. The obvious symmctries to choose
are the antisymmctrics associated with plane reflection. However. there are also rotation
symmetrics such as C,~ for the beam and C;. C,~ and C:~ for the plate which arc mostly
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Fig. ~. A planar ring.

~875

symmetric. From the viewpoint of reducing the size of the model of the structure under
investigation. both rand C 2 have the same result. i.e. the beam is modelled by a half beam
and the plate by a quarter plate. However when geometrically nonlinear behaviour is of
interest. the difference between choosing one of the two symmetries is very significant. since.
as is well known. antisymmetric deformation will violate the symmetry of the geometry of
the structure in its deformed configuration and therefore such antisymmetric conditions are
unacceptable. This can be seen clearly in the beam where antisymmetry requires that axial
force disappears at the centre of the beam. which rules out completely the prime nonlinear
elfect. On the other hand. if c~ (CI~ for the beam and C; and C; for the plate) is used
instead of r. the structure and load system as well as the deformation are symmetric under
the corresponding symmetry transformations. therefore. these arc acceptable even for
geometrically nonlinear prohlems.

Thus. it can be proposl.:d that when such nonlinearities arc involved. symmetric sym­
metry conditions must be chosen from among all the existing symmetries rather than
antisymmetric ones. More attention should be paid to symmetries associated with C~ types
sincl.: it is evident that such symmetries have not received as much attention as those of
the ~ type despite the 1~ICt that they arc more frequently encountered in laminated fibre­
reinfon.:ed composite structures than those associated with ~.

~. OTIIER APPLICATIONS OF SYMMETRY CONDITIONS

The application of symmetries r,. rl' c;. C; and C; to laminated composite structures
such as plates and shells is basically straightforward and the outcome is the reduction in
the size of the structure under investigation which is especially useful in numerical anal\lses
such as tinite ekment analysis. Translation symmetries Tt;' and T~' can till a similar role
for infinitely long plates under periodic load distributions. In this section we explore other
applications of symmetry conditions. These again bring simplification and economy by
reducing the number of dimensions of the problem. They arc therefore very useful both in
analytical and numerical analyses although here we shall concentrate only on issues related
to analytical studies.

(0)

p

(b)

Fig. 5. (iI) A simply-supported beam. (b) A rectangular plalc under corner loads.
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A familiar example is that of plane strain which. as a result of reflection symmetry
about any plane in which the problem is defined normal to the longitudinal axis along
which the normal strain is identically zero. brings great simplification to the problem since
the dimensions are reduced from 3 to 2 in general or for plates and shells from 2 to I. For
fibre-reinforced laminates the plane strain approach only applies to cross-ply structures.
The plane reflection type symmetries no longer exist for laminates with any off-axis plies
and so no plane strain problems can be posed for such laminates. However. by using other
types of symmetry. generalized plane strain problems can be obtained depending on the
nature of the load distribution. This is discussed below by assuming that the laminated
structure is infinitely long in they direction and that the geometry and the load are all
constant along this direction.

In laminated structures. a three-dimensional analysis is sometimes required in order
to provide detailed stress distributions. for example. for laminates with matrix cracks
(Hashin. 1985). In most treatments the problem is assumed to be a two-dimensional plane
strain problem and therefore the results obtained are restricted to cross-ply laminates.
However. by using translation symmetry TC;' with .1.1' -+ 0 instead of reflection symmetry
k, at any y. such two-dimensional approaches can be extended from cross-ply to any layout
including arbitrary ply. This approach results in a generalized plane strain problem for
whkh the governing equations in each lamina are as follows:

.ll1d

(1, ('II C II 0 0 CIt.

(1, ell C ,.I 0 0 Clio

!" = () 0 C4-j C~, 0

t'\: 0 () e~l e55 0

!" CIt. C.\t, 0 0 Cor,

1:.=
i'-

1"/'
itl'': = ""

('=

(~ll' hi
i',- = +

. Px /'=

I:,. = 0,

I:,

..
I r:

..
(\I'

( 14)

( 15)

( 16)

( 17)

where c" U. j = 1.2, ... ,6), is the stiffness matrix of the material (a uniaxially fibre-reinforced
composite) with respect to the global axes of the structure. Body forces are not included in
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the equilibrium equation (14). Boundary conditions are not given since they are standard.
As is well known. the interlaminar continuity of stresses and displacements has to be
introduced as boundary conditions for each lamina.

By employing plate theory (Vinson and Chou. 1975) the above two-dimensional
problem can be further specialized to a one-dimensional problem:

('\.\l"
--~~~ = 0
ex

ClY"
-_~-- = 0
ex

eM"---:;---Q,=O
ex

(\\1 "
-Q, =0

ex
(~Q,

(~x
=p

N" All A II, H" H lh 0 0 I::'

N". ..1 110 A hh lJ 110 B"" 0 0 "I,ll
1\1'

M" lJ" 1/ I', f) II 0 1 h 0 0 '" ,
=

Al ". fl l " 1/"" f) II, 0"" 0 0 1\· \ r

Q. 0 0 0 0 A 4 _1 A.I , ,\:

Q, () 0 0 () A H A" }'r:

( 18)

( 19)

(20)
(~/I

K,., = ",,-
ex

i'.: = II

and

(21 )

where p is the ('lteral distributed load (a function of x only) and superscript 0 refers to the
reference plane.

When a larninate is treated as a plate as above. further sirnplications can be introduced
if it is an antisyrnrnetric ply (A I'" A~h' HII • BI~' H~~. B"". D lh and D~(, vanish for such
layouts) by irnposing C; symmetry at the same time. Attention has to be paid to the loading

$AS Z9:Z3-E
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(0) (b)

Fig. 6. (a) A long plate under uniform stretching. (b) A long plate under uniform lateral pressure
and in-plane shear.

since it could be symmetric or antisymmetric as shown in Fig. 6. For symmetric loading
[Fig. 6(a)] the symmetry conditions are

1,° = II' = ex = 0 }

N,._ = M.... = Nf•.•. = Q, = 0 .

eqns (18)-(21) reduce to

(22)

(23)

(24)

iJ{1

ax
(25)

fi

and

For antisymmetric loading [Fig. 6(b)] we have symmetry conditions

LlO = fl =o.
Nn = N •. ,. = M .... = Q!. = O.

and eqns (18)-(21) reduce to

(26)

(27)
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cNt ... = 0
cx

cMu _ Q =0cx .,
cQx
-.-=p
ex

0':1.
K=­

x ox
ow

Y ·=':I.+­x. ex
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(28)

(29)

(30)

(31 )

It should be pointed out that for shells (long cylindrical shells with their axis in the .1'­
direction). whilst translational symmetry is also applicable and a set of simplified shell
equations can be obtained analogolls to those given in eqns (18)-(21). the simplifications
arising from C; for plates of antisymmetric ply cannot be obtained. The extension of such
simplifications to shells of revolution ean be obtained in a similar way (Noor and Camino
1976). The coincidence C.IO be readily seen from the observation that a rotation about the
axis of the shell is equivalent to a translation in the circumferential direction. henee the
translation symmetry presents itself in the circumferential direction.

All of the applications of symmetries thus far have been to particular structures to
reduce the number of degrees of freedom or to simplify the problem. Symmetry can also
be used to permit the response of a structure to be deduced from the response of either the
same structure under different loading conditions or a ditferent one. If the response is
known then. by applying certain symmetry transformations. the original problem can be
solved without detailed calculations. This is demonstrated in Fig. 7. If the response of the
plate in Fig. 7(a) is known. then all the responses of the plates in Figs 7(b)-(f) can be
readily obtained from the corresponding symmetry transformations. However. if the plate
is replaced by a curved panel. C; and C; [Figs 7(d) and (e)] cannot be used.

5. CONCLUSIONS

Reflection symmetries. for example r, and r,o have been widely used in structural analy­
sis. However. when laminated fibre-reinforced composite structures are concerned. their
applications are limited to structures of cross-ply layout. On the other hand. rotation sym­
metries C;. C; and C;. which have not received much attention hitherto. can be used for
more general I~youts and each of them. when applicable. cnn halve the size of the model to be
analysed as does r, or r,,, However the boundary conditions introduced by such symmetries
arc different in form from those of r, and r,.. Besides reducing the size of the model to be
analysed to the lowest level. identifying all the symmetries available in the structure under
investigation can also help in choosing proper symmetries for particular problems. for
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(b)

(e)

(e)

(f)

x

Fi~. 7. EquivaJ.:nt ,trlll:tun:s: (al [x,x: ... x,J (l~) ~.: [-x, -x: .../-x,j. (c) ~,: [-x, -x:!
·/-:>c.I· (d) C;' [x• ... x::>c,I. (.:) c.:: [x" ... /:>c: x,j. (I') C': [x, x, ... /x.J.

exampk symllletric sylllnH:tries for geollletrically nonlinear proo!t:ms. Furthermore, trans­
lational symmetries can oe used to reduce the nUllloer of dimcnsions of somc particular
prookllls just as rcfleetion symmetrics do. which may oe wry uscful in analytical approaches
for such proolcms as wcll as in numcrical analyscs .

.·lck110 1I '!"'!'",II/('/I 1.\' This work W;IS l.'llIllpkl.:d during Ih.: .:ours.: Ill' Ministry of [)d'.:nc.: r.:s.:arch .:onlra<:l
20-1-1. ((,1, R:\ R D!': Ih.: support fl'lllll which is gral.:fully ;Il.'knowkdg.:d.
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