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Abstract—In this paper the use of symmetries in problems concerned with laminated fibre-reinforced
composite structures is examined systematically. Incorrect and incomplete treatments of this subject
have appeared in the literature and these are clurified herein. A model of a complete structure is
not needed provided that the geometry and the loading of the structure show the required symmetry
propertics. even though the boundary conditions introduced can vary from one symmetry to another.
The extent of the reduction in the size of the problem depends upon the laminate layout scheme.
Particular comments are made on the proper use of symmetries in geometrically nonlincar problems.
Further applications of symmetries in analytical approaches which lead to 4 reduction in the number
of the dimensions of the problem are also discussed.

l. INTRODUCTION

For any body in three-dimensional space, there are three independent types of trans-
formation which reveal particular symmetrics (Hammermesh, 1962)

(1) Reflection in a plane (or mirror reflection) denoted as T or more specifically as Z,
if the planc is normal to the x-axis.

(2) Rotation through an angle about some axis, noted as C" if the angle is 2a/n, or
C7 il the axis is the x-axis. In particular, C? is sometimes termed as reflection in a line,
skewsymmetry, inversion symmetry or polar symmetry.

(3) Translation symmetry, denoted by T2 if the translation is A or by T2 if the
translation is Ax along the x-axis. Such symmetry may occur only when the body is of
infinite extent in the chosen direction.

All other symmetries can be obtained by a combination of these three, e.g. reflection
in a point is simply the combination of £ and C*.

When symmetries are used in structural mechanics, three factors have to be taken into
consideration : geometry, loading and material. The first two were reviewed by Glockner
(1973) in great detail and the third was examined by Noor (1976) and Noor and Camin
(1976) for luminated anisotropic structures. In spite of the availability of such work,
incorrect uses of symmetry conditions for laminated anisotropic structures have appeared
in the literature from time to time [see for example Reddy (1984)], mostly in the context of
worked examples. The treatments of this question by Reddy (1984) and Mallikarjuna (1991)
were devoted specifically to symmetry conditions and were cither incorrect or incomplete
and, therefore, might mislead. One reason for this is the fact that the symmetry conditions
in Noor and Camin's work are in the form of transformations rather than boundary
conditions dircctly which makes them less explicit and therefore they have not received
cnough attention. There seems to be a need to produce a complete examination of the
problem to cnsure that symmetry conditions are used correctly, effectively and simply. This
paper provides such an explanation in the context of laminated composite structures.

2. SYMMETRIES AND SYMMETRY CONDITIONS

It is helpful first to specify what we mean by “‘symmetry” and “‘symmetry conditions”.
Symmetry is a general physical property which a structural system may possess and sym-
metry conditions are the conditions implied by this state. We shall come across the word
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“antisymmetric” used in two different ways. One 1s antisymmetric loading which results in
antisymmetry. i.e. there are reversals in the directions of the variables describing the state
of the structure. To emphasize the ditference. the terms “symmetric symmetry conditions™
and “antisymmetric symmetry conditions™ may be used. It is then clear that antisymmetry
is a form of symmetry which appears only when the geometry and the material of the
structure possess the particular symmetry while the loading changes its sense under the
symmetry transformation. The other occasion on which the word is used is in defining the
lavout scheme of a laminate as an antisymmetric ply. This is commonly accepted termin-
ology and strictly has nothing to do with the symmetry conditions under discussion.

We shall explore all the possible symmetries that the material (fibre-reinforced com-
posite laminates) may possess. regardless of the actual geometry and associated loading.
Figure 1 shows a typical material element where x. 1 and - are local material coordinate
axes which do not necessarily coincide with the global axes used to describe the structure.
The z-axis is normal to the lamina. For the suke of convenience, the layout of the laminates
will be classified into one of three types and the corresponding discussions will be made
with orientations referred to the local x-, y-, z-axes. The angles refer to the orientation of
the fibres in a particular famina with respect to the v-axis.

(1) Cross-ply (e.g. [0°/90°/90 ])

This is a laminate with several layers whosce fibres are parallel to or at right angles to
the v-axis as indicated. Materials with such a layout possess symmetries £,, £, C2, T, and
T.. Furthermore if the layout is middle surtace symmetric, e.g. [0 ;90 /90 ,0 |. we have
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symmetries Cand C] while the symmetry X, results from the symmetric layout.

(1) Antisvmmetric ply {c.g. [2/%,) =2/ = 2,])

Matcrials with this layout possess symmetries C3, CZL CH T, and 7', 1t should be
noted that the so-called antisymmetric cross-ply, ¢.g. [0/90 /0 790}, could be a particular
form of this category il the local x- and p-axes are so chosen that they are at 45 to the
fibre direction.

(i) Arbitrary ply (c.g. {2 /2,/23])

Materials of this layout still possess symmetries C7, 7, and 7, in general. It is the
symmetry C: that was not recognized by Reddy (1984) and Mallikarjuna (1991) and
therefore it was suggested therein that full structures have to be analysed for such layouts.
However tor the geometry and the loading possessing the symmetries of the examples in
these references, o half structure model is always applicable by using this symmetry.

Euach of the symmetries can be expressed in terms of symmetry conditions which can
then be applied as boundiry conditions to the representative portion of the structure along
its edges, Suppose that the geometry and the loading possess the sume symmetries as the
material. Then the symmetry conditions are given in Table 1, where cach material particle
on the reference surface is assumed to have six degrees of freedom, translations along the
axes n., w, and . and rotations about the axes 0, 0, and 0.. The associated generalized
forces are F, F,. F., M., M, and M.. Each of these can be casily identified as sectional
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Fig. 1. A typical material clement.
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Table I. Symmetry conditions
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Fig. 2. Identification of generalized displacements and forees for plates and shells.

variables w, oow,o 2 o N N N M ML ML QL and Q. in laminated plates and
shells as shown in Fig. 2. Depending on the nature of the loading, the symmetry conditions
in Table [ are given for symmetric and antisymmetric cases respectively. For displacement
finite element analysis in particular, one does not need to be concerned about the foree
conditions in Table 1, since they will be included as natural boundary conditions and
satisfied automatically by the variational procedure.

In laminated anisotropic structures, the material property is characterized by the well-
known A, B and D matrices [sce Vinson and Chou (1975)] and there may be coupling
between the components of the stress resultants and the generalized strains to different
extents depending on the nature of the layout. Two particular types of coupling ure those
represented by matrix B and those elements in the oA, 8 and D matrices with subscripts 16
and 26 resulting from the presence of off-axis plics. Reddy (1984) attributed the invalidity
ol X-type symmelry to the former type of coupling. This is not correct. What violates the
Y-type symmetry is the latter type of coupling. What have been violated due to the presence
ol nonzero clements in the 8 matrix (specifically, clements B, . B, . B, B,) are symmetries
C?and C;. This did not seem to be realized by Reddy (1984). Fortunately, none of these
types of coupling violates the symmetry C.

The symmetry conditions given by Mallikarjuna (1991) relate to some particular cases
which will be considered later in the examples. However the conclusion that a full structure
model has to be used for an arbitrary ply is not valid in view of the symmetry C? which is
satisticd by the loading as well as the geometry for the particular example quoted.

It should be noted that once a structure shows symmetry CZ. it makes no difference
which plane is chosen to cut the structure into two symmetric or antisymmetric halves as
long us the planc passes through the rotation axis. Noor and Camin (1976) preferred a
diagonal plane which ts obviously not the best choice when quadrilateral elements are used.
In this casc one has 1o resort to the concept of dependent nodes to apply such symmetry
conditions, which may blur the clarity of the application of such symmetry conditions in
certain cases. However for problems in which the only symmetry shown in the structure,
usually of type Z,, Z,, C'{ or C}, is between the two halves cut by such diagonal planes,
the concept of dependent nodes can be very useful.

To show how the symmetry conditions are applied in practice, it is helpful to look at
a few examples. Threce structures are given in Fig. 3. When the layouts of these structures
are cross-ply, the symmetry conditions are no different from those for structures made from
isotropic materials which are familiar to the reader. However, it may be worth noting that
the loading could be antisymmetric as in Fig. 3(b) for I, symmetry. Only the symmetric
case such as Fig. 3(a) was given for this layout by Mallikarjuna (1991). Herein we shall
concentrate on layouts other than cross-ply.
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(c)

Fig. 3. Examples: () A rectangular plate under uniform pressure. (b) A rectangular plate under
lincarly distributed pressure. (¢} A cylinder under a pair of concentrated loads.

For an antisymmetric ply, e.g. [x,/2./ — 2,/ —x,]. the structure in Fig. 3(a) possesses
C?and C? symmetries (C7as well, but it is not independent, actually it is a simple
combination of €' and C?) while the loading is antisymmetric under both transformations.
(The loading is symmetric under £, and Z,, but the material does not possess such sym-
metries.) I the plate is cut along the x- and y-axes and modelled by a quarter of it, the
boundiry conditions are

u=f=0 at y=0 (antisymmetric)
and . (N
r=a=0, atx=0 (antisymmetric)

These are exactly what were proposed by Mallikarjuna (1991). However, the situation is
quite different for the structure in Fig. 3(b) where the loading is antisymmetric [as in Fig.
3(w)] under C7 but symmetric under C}. (The loading is antisymmetric under £, but again
the material does not possess such symmetry.) Therefore the boundary conditions for the
quarter plate are

I

f =0, at y =0 (antisymmetric)
and . (2)
w=[f=0, at x =10 (symmctric)

I

u

It is seen that a plate with antisymmetric plics can be exactly represented by a quarter model
provided that the geometry possesses the same symmetries C; and C} as does the material,
and the loading is either symmetric or antisymmetric under these symmetry transformations.
Boundary conditions for the quarter model can be obtained from the symmetry conditions
(Table I) corresponding to the symmetric or antisymmetric nature of the loading.

Moving on to plates with arbitrary ply orientations as in Figs 3(a) and (b). the only
symmetry is C2. Thus they can both be modelled by half models. Under this symmetry, the
loading is symmetric in Fig. 3(a) and antisymmetric in Fig. 3(b). Suppose the plates are cut
along the x-axis, the boundary conditions along it are
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o= =U_ion
Cloveo = —Cl i
Whevao =Wl _ioa . (3)
Aveo = =% _cimn
Bliico = —[ﬂ Sna=0
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u=r=x=f=90 withwiree atyv=y=0. ()
and
Ul voo=Ul_cy=n
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/”\'.\':(l = [”'—v.r=l)
with
w=0 with we.a,flree atv=1p=0 (6)

for the plates in Figs 3(a) and (b) respectively.

Of course, to apply the C? one can cut the plates along any other axis through the
origin in the v 3 plane such as the diagonals used in Noor er «l.’s papers and arrive at a
similar st of conditions, but such arrangements are obviously not the best choice when
quadrilateral clements are used. This is because, in this case, one has to cither introduce a
very irregular mesh or resort to the concept of dependent nodes [see Noor (1976)] to apply
the symmetry in the torm of a transformation which is much less explicit than in the form of
boundary conditions given above. [t should be pointed out that, whatever choice is made,
nonce of the other possibilitics can be used at the same time sinee there is only one independent
symmetry. In other words laminates of arbitrary ply can be modelled by half models but
never snaller than half,

[tis important (o notice the difference between boundary conditions (1) and (2) and
those given in (3) and (5). The first are in the form of prescribed values (zero in this case)
which is quite standard while the latter are in the form of equations relating unknowns. A
briel' demonstration is provided below of the application of such conditions. Assume that
the fintte clement equilibrium equation is in the form:
K, | A, symum,
I\’HI,: 1 KI»I,J A’If|,1'|

/\., [ I\—/ 1. [\’1 [ L I\'/ |l
N, | K, K, .\ K, K,
l\',.lr 1 K/~I.n K;»I.:»l K/rl./ 1 K/bl./ A’/‘I.I?|
lll ]‘-’
U, .y [?l+l
“ | #:ﬁ Fof O
u, £,
“j+| F/&l
. S . J

Imposing the condition
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u = +u (%)
leads to the following form of eqn (7):
[ e ]
Kl.i -1 i K/.z -1 Kl.l t A’/./ i ZA-/ Symm
Klol.l-l A’l*l.liKl*Ll K'-bl.n-l
KrAl.wI K/'LliK/—L! K]—I.lol K/»I./»l
K/*l.l*‘ K/«I.zj-_[\’/¢l,l K’/+|.l-‘| K/+l,;»| A-/vl./cl
u; E£F,
o F.
D )
“[*l F/ 1
u,, O
L J L J

The symmetric property of the stiffness matrix is retained after imposing the conditions but
the band width of the particular columns {ith in eqn (9)] can be affected (increased) to some
extent. Even so the solution of such a system is always more cconomical than dealing with
a complete structure,

The increases in the band width of particular columns in the stiftness matrix to different
extents for different choices of cutting planes could make a slight difference in computing
costs, but these differences are usually negligible,

The discussion above shows that a plate with arbitrury ply orientations can be rep-
resented exactly by a half model. This contradicts the conclusions drawn by both Reddy
(1984) and Mallikarjuna (1991).

The third example in Fig. 3(¢) is a cylinder. The main discussion will centre on the
case of an arbitrary ply but brief comments will also be made about the antisymmetric ply
cuse. It is obvious that the problem (geometry, loading and material) possesses three
symmetries C7, C; and C? (x, y, = are the global axes of the structure and are different
from those of the material). However, only two of them are independent. Therefore, the
structure can be represented by a quarter model. For the quarter y 2 0, 2 2 0, the boundary
conditions along the two edges are

from C;:

Ul vaozan = —U|l o ymozar
tliyaozor = =01 ymosar
Wlevaozer =W oianzer . (10)
oveozern = =2 cpanzar

/"l.n—ﬂ.:‘k = —/”mr.r-n.-‘*/‘
u=r=x=f=0 atx=0, y=0 :z=R: (1

and from C::
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Ulevmremo = — U _ciurznn
Clevarino = =l ciarznn
W(\nrsR.:s() = “"—r;sR:=0 (12)
11.(.5':R.:=0 = “1|—( v=Rz2=10
= R,

ﬁlt.vr=RA:=0 = _ﬂ|—r y=Rit=0

u=r=x2=f=0, atx=0, z=0. (13)
Here « and v are the in-plane axial and tangential displacements. x and § are the cor-
responding rotations and w is the lateral deflection. Here. all the conditions correspond to
symmetric loading. In practice there could be a case of antisymmetric loading. The boundary
conditions could be obtained in a corresponding manner which is quite straightforward.
Also, one may prefer to choose other quarters than the one chosen here. The boundary
conditions could be obtained in a similar manner to those above.

It is interesting to note that in this case having an antisymmetric ply in the shell
structure provides no extra help at all. This is because the local axes of material symmetries
C?!and C; (where here x and v are local axes) are not coincident with the global axes of
the structure. This could be regarded as another difference between plates and shells from
the viewpoint of symmetry properties.

The above discussions are basically focused on rotation symmetries. Before completing
this section, it might be helpful to comment on the two most frequently encountered
symmetrics associated with reflection and rotation in laminated structures. It has been
demonstrated through the examples considered that the rotation symmetrics can be cx-
pressed in terms of boundary conditions which are of no substantial difference in form
from thosc associated with reflection symmetries. Therefore, once a rotation symmetry is
identificd. it can be casily interpreted based on the above discussions and the procedure to
apply such a boundary condition is familiar to structural analysts. It has also been shown
that the rotation symmetrics are as effective as reflection symmetries in reducing the size of
the mode! to be analysed. Beyond this, it should be noted that rotation symmetrics
appear much more frequently in laminated structures than reflection symmetries. One of the
major intentions of this paper is to draw the attention of structural analysts to this type of
symmetry in laminated structures and to encourage them to make full use of it in practice.

Finally, it might be helpful to recall two well-known facts. Firstly, any arbitrarily
distributed load can be decomposed into a symmetric component and an antisymmetric
one. This may be uscful sometimes since it may be more economical to carry out two
separate half structure analyses (onc symmetric and one antisymmetric) than to analyse a
single, complete structure. Secondly, in some analyses there might be situations where load
or load increment appears to be in a neutral state such as in problems of free vibration
(Noor and Camin, 1976) and buckling (Li and Reid, 1990). The behaviour of the structure
could be either symmetric or antisymmetric and therefore both have to be analysed before
one can decide which leads to the lowest frequency or buckling load.

3. CHOOSING THE SYMMETRIES IN GEOMETRICALLY NONLINEAR PROBLEMS

Consider first a simple example of the planar ring shown in Fig. 4. It is obvious that
the problem satisfies both symmetric symmetry Z, and antisymmetric symmetry .. As is
well known [sce for example Niles and Newell (1943)], the former reduces the degree of
statical indeterminancy by one whilst the latter produces a reduction of two. The point of
this cxample is to show that a different choice of symmetries does make a difference in the
naturc of the reduced problem. These differences can be very pronounced since some choices
may be unacceptable in certain circumstances when geometric nonlinearity is involved.

As noted above, some problems may possess more than onc form of symmetry. To be
specific, consider the two simple examples in Fig. 5. The obvious symmetrics to choose
are the antisymmetries associated with plane reflection. However, there are also rotation
symmetrics such as C; for the beam and C;. C} and C? for the plate which arec mostly



Symmetry conditions for composite structures 2875

P p

Fig. 4. A planar ring.

symmetric. From the viewpoint of reducing the size of the model of the structure under
investigation, both X and C? have the same result. i.e. the beam is modelled by a half beam
and the plate by a quarter plate. However when geometrically nonlinear behaviour is of
interest, the difference between choosing one of the two symmetries is very significant, since.
as is well known. antisymmetric deformation will violate the symmetry of the geometry of
the structure in its deformed configuration and therefore such antisymmetric conditions are
unacceptable. This can be seen clearly in the beam where antisymmetry requires that axial
force disappears at the centre of the beam. which rules out completely the prime nonlinear
cffect. On the other hand. if C* (C} for the beam and C? and C; for the plate) is used
instead of I, the structure and load system as well as the deformation are symmetric under
the corresponding symmetry transformations, thercfore, these are acceptable even for
geometrically nonlincar problems.

Thus, it can be proposcd that when such nonlincarities are involved, symmetric sym-
metry conditions must be chosen from among all the existing symmetries rather than
antisymmetric ones. More attention should be paid to symmetries associated with C* types
since it is evident that such symmetrics have not reccived as much attention as those of
the X type despite the fact that they are more frequently encountered in laminated fibre-
reinforced composite structures than those associated with X,

4. OTHER APPLICATIONS OF SYMMETRY CONDITIONS

The application of symmetries £, Z,. C7, C; and C to laminated composite structures
such as plates and shells is busically straightforward and the outcome is the reduction in
the size of the structure under investigation which is especially useful in numerical analvses
such as finite element analysis. Translation symmetries T3 and T2 can fill a similar role
for infinitely long plates under periodic load distributions. In this section we explore other
applications of symmetry conditions. These again bring simplification and cconomy by
reducing the number of dimensions of the problem. They are therefore very useful both in
analytical and numerical analyses although here we shall concentrate only on issues related
to analytical studics.

(a) (b)

Fig. 5. (a) A simply-supported beam. (b} A rectangular plate under corner loads.
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A familiar example s that of plane strain which, as a result of reflection svmmetry
about any plane in which the problem is defined normal to the longitudinal axis along
which the normal strain is wdentically zero. brings great simplification to the problem since
the dimensions are reduced from 3 to 2 in general or for plates and shells from 2 to I. For
fibre-reinforced laminates the plane strain approach only applies to cross-ply structures.
The plane reflection type symmetries no longer exist for laminates with any off-axis plies
and so no plane strain problems can be posed for such laminates. However, by using other
types of symmetry. generalized plane strain problems can be obtained depending on the
nature of the load distribution. This is discussed below by assuming that the laminated
structure is infinitely long in the y direction and that the geometry and the load are all
constant along this direction.

In laminated structures. a three-dimensional analysis is sometimes required in order
to provide detailed stress distributions, for example, for laminates with matrix cracks
(Hashin, 1985). In most treatments the problem is assumed to be a two-dimensional plane
strain problem and therefore the results obtained are restricted to cross-ply laminates.
However. by using translation symmetry 72 with Ay — 0 instead of reflection symmetry
X, atany v, such two-dimensional approaches can be extended from cross-ply to any layout
including arbitrary ply. This approach results in a generalized plane strain problem for
which the governing equations in each lamina are as follows:

fo, (1, 0 3
ox Az
‘., + 0ty 0
X o - ’ (14)
It (o,
V=0
cx oz J
T, ¢, Chy 0 0 Cy, £,
\ Civ Co 0 0 Ci, hS
. 7 = 0 0 Cyu Cix O Ve [ (15)
T, 0 0 6'45 (‘SS 0 Vs
T, Cio Cia 0 0 Ce T
Cu h
£,o= o
Ox
ow
P
) [t
or
e = A P (16)
aw Cu
M= et i
o
I'n‘ = -~
[SAN W,
and
£, =10,
o, = Ciat+Coat. + Crove (17)
where G, (7, j= 1.2,....6). is the stiffness matrix of the material (a uniaxially fibre-reinforced

compositc) with respect to the global axes of the structure. Body forces are not included in
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the equilibrium equation (14). Boundary conditions are not given since they are standard.
As 15 well known, the interlaminar continuity of stresses and displacements has to be
introduced as boundary conditions for each lamina.

By employing plate theory (Vinson and Chou, 1975) the above two-dimensional
problem can be further specialized to a one-dimensional problem:

("‘\"‘
X
CN,,
——=0
[GAY
cM
’T_‘: -V = 0 >
= (18)
cM ., 0
cx Q.=
cQ. B
l’.\' h J
FNn _"'Il 4 By By, 0 07 [«
N\r A, A 6n ”1 o ch 0 0 ’I'(\'r
M., B n. D D,. 0 0 K,
) - 1 1e 1 i ) . (19)
M., B Bu D D 0 0 LN
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L 0. L0 0 0 0 Ay Ao ] Ly
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o Ju
" cx
." _ (ﬂpl)
R
Cx
K, =
cx e , (20)
_op
v oy
aw
I’\ - 1+ (3.\'
i = /f o

and

o =x,=0

Ivl v = ." [} :‘:? + ,‘l :l\.l'?l + [3| :'\.‘ + I}:(‘K” . (2] )
M, = B!+ B0 + Dk o+ Dak,,

where p is the lateral distributed load (a function of v only) and superscript 0 refers to the
reference planc.

When a laminatce is treated as a plate as above, further simplications can be introduced
iff it is an antisymmetric ply (4. Ase. B11. By Baao By Dy, and D, vanish for such
layouts) by imposing C; symmetry at the same time. Attention has to be paid to the loading
SAS 29:23-E
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(a) (b)

Fig. 6. (a) A long plate under uniform stretching. (b) A long plate under uniform lateral pressure

and in-plane shear.

since it could be symmetric or antisymmetric as shown in Fig. 6. For symmetric loading

[Fig. 6(a)] the symmetry conditions are

,0

t'=w=a=0
Nn‘= M.r,\'= A/[l'_\'= Q\'=0 )

eqns (18)—(21) reduce to

ON .
AL
Ox
oM.,
ox Q.=
N Ay B 0 e
M 13 = B (1] B 66 0 er,r ’
Q. 0 0 A Pz
ou’
8() —(i;:
Ko 0 =) 9
Tae Ox

and

and eqns (18)—(21) reduce to

(22)

(23)

(25)

(26)

(27)
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&N, w
éx 0
aMXX
E ~-Q.=0p, (28)
é0.
(?'.\’ =P J
. A‘ny Ags Bis O 7.8;-
Mx.\' = Bl6 Dl ] 0 Ky ’ (29)
Q.r 0 0 A-l-l 7.\':
o 8 )
¥ dx
k=2 30
£ X y ( )
ow
Ve = x+ 6.‘( J

and

0 __ .. -
Iv[.lil' = Blhy‘\’r + Dl!'\.\’

It should be pointed out that for shells (long cylindrical shells with their axis in the y-
direction), whilst translational symmetry is also applicable and a set of simplificd sheil
cquations can be obtained analogous to those given in eqns (18)-(21), the simplifications
arising from C? for plates of antisymmetric ply cannot be obtained. The extension of such
simplifications to shells of revolution can be obtained in a similar way (Noor and Camin,
1976). The coincidence can be readily seen from the observation that a rotation about the
axis of the shell is equivalent to a translation in the circumferential direction, hence the
translation symmetry presents itself in the circumferential direction.

All of the applications of symmetries thus fur have been to particular structures to
reduce the number of degrees of freedom or to simplify the problem. Symmetry can also
be used to permit the response of a structure to be deduced from the response of either the
same structure under different loading conditions or a different one. If the response is
known then, by applying certain symmetry transformations, the original problem can be
solved without detailed calculations. This is demonstrated in Fig. 7. If the responsc of the
plate in Fig. 7(a) is known, then all the responses of the plates in Figs 7(b)-(f) can be
readily obtained from the corresponding symmetry transformations. However, if the plate
is replaced by a curved panel, C; and C} [Figs 7(d) and (e)] cannot be used.

5. CONCLUSIONS

Reflection symmetrics, for cxample Z, and Z,, have been widely used in structural analy-
sis. However, when laminated fibre-reinforced composite structures are concerned, their
applications are limited to structures of cross-ply layout. On the other hand, rotation sym-
metries C3, C} and C?, which have not received much attention hitherto, can be used for
more general layouts and each of them, when applicable, can halve the size of the model to be
analysed asdoes I, or Z,. However the boundary conditions introduced by such symmetries
are different in form from those of Z, and Z,. Besides reducing the size of the model to be
analysed to the lowest level, identifying all the symmetries available in the structure under
investigation can also help in choosing proper symmetries for particular problems. for
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(d) (e) (f)

Fig. 7. Eguivalent structures: ) [ x,..ox,] () T [—x =2 i =x) (© I [—2 -2
= WY Ol e ) [ a0 CRr 2y %)

example symmetric symmetries for geometrically nonlincar problems. Furthermore, trans-
lational symmetries can be used to reduce the number of dimensions of some particular
problems justas reflection symmetries do, which may be very useful in analytical approaches
for such problems as well as in numerical analyses.
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